Shortest Paths in Distance-regular Graphs
نویسندگان
چکیده
We aim here at introducing a new point of view of the Laplacian of a graph, Γ. With this purpose in mind, we consider L as a kernel on the finite space V (Γ), in the context of the Potential Theory. Then we prove that L is a nice kernel, since it verifies some fundamental properties as maximum and energy principles and the equilibrium principle on any proper subset of V (Γ). If Γ is a proper set of a suitable host graph, then the equilibrium problem for Γ can be solved and the number of the different components of its equilibrium measure leads to a bound on the diameter of Γ. In particular, we obtain the structure of the shortest paths of a distance-regular graph. As a consequence, we find the intersection array in terms of the equilibrium measure. Finally, we give a new characterization of strongly regular graphs.
منابع مشابه
Improved Bounds for Shortest Paths in Dense Distance Graphs
We study the problem of computing shortest paths in so-called dense distance graphs. Every planar graph G on n vertices can be partitioned into a set of O(n/r) edge-disjoint regions (called an r-division) with O(r) vertices each, such that each region has O( √ r) vertices (called boundary vertices) in common with other regions. A dense distance graph of a region is a complete graph containing a...
متن کاملMinimum Eccentricity Shortest Paths in Some Structured Graph Classes
We investigate the Minimum Eccentricity Shortest Path problem in some structured graph classes. It asks for a given graph to find a shortest path with minimum eccentricity. Although it is NP-hard in general graphs, we demonstrate that a minimum eccentricity shortest path can be found in linear time for distance-hereditary graphs (generalizing the previous result for trees) and give a generalise...
متن کاملProbabilistic Pursuits on Graphs
We consider discrete dynamical systems of ”ant-like” agents engaged in a sequence of pursuits on a graph environment. The agents emerge one by one at equal time intervals from a source vertex s and pursue each other by greedily attempting to close the distance to their immediate predecessor, the agent that emerged just before them from s, until they arrive at the destination point t. Such pursu...
متن کاملA survey of the all-pairs shortest paths problem and its variants in graphs
There has been a great deal of interest in the computation of distances and shortest paths problem in graphs which is one of the central, and most studied, problems in (algorithmic) graph theory. In this paper, we survey the exact results of the static version of the all-pairs shortest paths problem and its variants namely, the Wiener index, the average distance, and the minimum average distanc...
متن کاملDistance closures on complex networks
To expand the toolbox available to network science, we study the isomorphism between distance and Fuzzy (proximity or strength) graphs. Distinct transitive closures in Fuzzy graphs lead to closures of their isomorphic distance graphs with widely different structural properties. For instance, the All Pairs Shortest Paths (APSP) problem, based on the Dijkstra algorithm, is equivalent to a metric ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Eur. J. Comb.
دوره 21 شماره
صفحات -
تاریخ انتشار 2000